緩蝕劑的電化學機理
金屬的腐蝕大多是金屬表面發(fā)生原電池反應的結果,這也是造成浸蝕腐蝕主要的因素,原電池反應包括陽極反應和陰極反應。如果緩蝕劑可以抑制陽極、陰極反應中的任何一個或兩個,原電池反應將減緩,金屬的腐蝕速度就會減慢。我們把能夠抑制陽極反應的緩蝕劑稱為陽極抑制型緩蝕劑;能夠抑制陰極反應的緩蝕劑稱為陰極抑制型緩蝕劑;而既能抑制陽極反應又能抑制陰極反應的緩蝕劑稱為混合型緩蝕劑。
重鉻酸鉀、鉻酸鉀、亞硝酸鈉、硝酸鈉、高錳酸鉀、磷酸鹽、硅酸鹽、硼酸鹽、碳酸鹽、苯甲酸鹽、肉桂酸鹽等都屬于陽極型緩蝕劑。
陽極型緩蝕劑對陽極過程的影響是:①在金屬表面生成薄的氧化膜,把金屬和腐蝕介質隔離開來;②因特性吸附抑制金屬離子化過程;③使金屬電極電位達到鈍化電位。
硫酸鋅、碳酸氫鈣、石灰、聚磷酸鹽、硅酸鹽及有機膦酸鹽都屬于陰極抑制型緩蝕劑。
陰極型緩蝕劑主要通過以下作用實現(xiàn)緩蝕:①提高陰極反應的過電位.有時陰離子緩蝕劑通過提高氫離子放電的過電位抑制氫離子放電反應,例如,Na2C03、三乙醇胺等堿性緩蝕劑都可以中和水中的酸性物質,降低氫離子濃度,提高析氫過電位,使氫離子在金屬表面的還原受阻,減緩腐蝕;②在金屬表面形成化合物膜,如有機緩蝕劑中的低分子有機胺及其衍生物,都可以在金屬表面陰極區(qū)形成多分子層,使去極化劑難以達到金屬表面而減緩腐蝕;③吸收水中的溶解氧,降低腐蝕反應中陰極反應物--02的濃度,從而減緩金屬的腐蝕。
混合抑制型緩蝕劑多為有機化合物。有機緩蝕劑分子上的反應基團和腐蝕過程中生成的金屬離子相互作用生成沉淀膜,而抑制陰陽兩極的電化學過程。例如,丙炔醇對鐵在酸性水溶液中有良好的緩蝕效果。又如,8-羥基喹啉在堿性介質中對鋁的腐蝕有緩蝕作用,這是由于緩蝕劑和鋁離子反應生成的不溶性配合物沉淀膜覆蓋在鋁表面,抑制了鋁在堿性水溶液中的腐蝕。苯并三氮唑對銅的緩蝕作用也認為是生成了不溶性的聚合物沉淀膜。
混合型緩蝕劑對腐蝕電化學過程的影響主要表現(xiàn)在:①與陽極反應產(chǎn)物反應生成不溶物,這些不溶物緊密地沉積在金屬表面起到緩蝕的作用,磷酸鹽如Na3P04、Na2HP04對鐵、鎂、鋁等的緩蝕就屬于這一類型;②形成膠體物質,能夠形成復雜膠體體系的化合物可作為有效的緩蝕劑,例如Na2Si03等;③在金屬表面吸附,形成吸附膜達到緩蝕的目的,明膠、阿拉伯樹膠等可以在鋁表面吸附,吡啶及有機胺類可以在鎂及鎂合金表面吸附,故都可以起到緩蝕的作用。
緩蝕劑的物理化學機理
從物理化學的角度來理解,緩蝕劑的作用可以分為生成氧化膜、沉淀膜和吸附膜3種。因此緩蝕劑也分為氧化膜型緩蝕劑、沉淀膜型緩蝕劑和吸附膜型緩蝕劑。
氧化膜型緩蝕劑
氧化膜型緩蝕劑本身是氧化劑,可以和金屬發(fā)生作用?;虮旧聿痪哂醒趸?,以介質中的溶解氧為氧化劑,使金屬表面形成緊密的氧化膜,造成金屬離子化過程受阻,從而減緩金屬的腐蝕,這種緩蝕劑又稱鈍化劑。重鉻酸鉀、鉻酸鉀、高錳酸鉀在含氧的水溶液中對鋁、鎂的緩蝕作用就屬于這一類。氧化膜型緩蝕劑,緩蝕效率高,已得到廣泛的應用。但如果用量不足,則可能在金屬表面形成大陰極小陽極而發(fā)生孔蝕。所以這一類緩蝕劑又稱為“危險型緩蝕劑”。
沉淀膜型緩蝕劑
沉淀膜型緩蝕劑,顧名思義就是在金屬表面生成了沉淀膜。沉淀膜可由緩蝕劑分子之間相互作用生成,也可由緩蝕劑和腐蝕介質中的金屬離子作用生成。在多數(shù)情況下,沉淀膜在陰極區(qū)形成并覆蓋于陰極表面,將金屬和腐蝕介質隔開,抑制金屬電化學腐蝕的陰極過程,即陰極抑制型。有時沉淀膜能覆蓋金屬的全部表面,同時抑制金屬電化學腐蝕的陽極過程和陰極過程,這一種稱為混合抑制型。
吸附膜型緩蝕劑
吸附膜型緩蝕劑多為有機緩蝕劑,它們在腐蝕介質中對金屬表面有良好的吸附性,這種吸附改變了金屬表面的性質。抑制了金屬的腐蝕。因為這類緩蝕劑分子結構具有不對稱性,分子由極性基和非極性基組成。非極性基為烴基,有親油性,而極性基如-COOH、-S03H等具有親水性,對金屬表面也具有親和性。當緩蝕劑分子的極性基在金屬表面吸附后,其較長的非極性基也在范德華力的作用下緊密排列,從而形成牢固的吸附膜。表面吸附一方面改變了金屬表面的電荷狀態(tài)和界面性質,使金屬表面的能量狀態(tài)趨于穩(wěn)定,增加腐蝕反應活化能,減緩腐蝕速度;另一方面,非極性基的隔離作用將金屬表面和腐蝕介質隔開,阻礙電化學反應相關的電荷或物質的轉移,從而減緩腐蝕。
致力于優(yōu)化每個水處理項目,打造中國環(huán)保行業(yè)品牌企業(yè)
保護環(huán)境是我們每個人的責任和義務